
1

EXTRUST: Reducing Exploit Stockpiles with a
Privacy-Preserving Depletion System for Inter-State

Relationships
Thomas Reinhold∗, Philipp Kuehn∗, Daniel Günther†, Thomas Schneider† and Christian Reuter∗

∗Science and Technology for Peace and Security (PEASEC)
Technical University of Darmstadt, Germany

†Cryptography and Privacy Engineering Group (ENCRYPTO)
Technical University of Darmstadt, Germany

Abstract—Cyberspace is a fragile construct threatened by
malicious cyber operations of different actors, with vulnerabilities
in IT hardware and software forming the basis for such activities,
thus also posing a threat to global IT security. Advancements
in the field of artificial intelligence accelerate this development,
either with artificial intelligence enabled cyber weapons, auto-
mated cyber defense measures, or artificial intelligence-based
threat and vulnerability detection. Especially state actors, with
their long-term strategic security interests, often stockpile such
knowledge of vulnerabilities and exploits to enable their military
or intelligence service cyberspace operations. While treaties and
regulations to limit these developments and to enhance global
IT security by disclosing vulnerabilities are currently being
discussed on the international level, these efforts are hindered
by state concerns about the disclosure of unique knowledge and
about giving up tactical advantages. This leads to a situation
where multiple states are likely to stockpile at least some identical
exploits, with technical measures to enable a depletion process
for these stockpiles that preserve state secrecy interests and
consider the special constraints of interacting states as well as
the requirements within such environments being non-existent.
This paper proposes such a privacy-preserving approach that
allows multiple state parties to privately compare their stock
of vulnerabilities and exploits to check for items that occur in
multiple stockpiles without revealing them so that their disclosure
can be considered. We call our system EXTRUST and show that
it is scalable and can withstand several attack scenarios. Beyond
the intergovernmental setting, EXTRUST can also be used for
other zero-trust use cases, such as bug-bounty programs.

Index Terms—Exploit, Vulnerability, Arms Control, Cy-
berspace, Blockchain, Multi-Party Computation

I. INTRODUCTION

The threat of malicious cyber activities is omnipresent
and state actors are becoming an increasingly important part
of this development [1], [2], either due to the progressing
militarization of cyberspace [3], [4] or due to cyber espionage
operations [5], [6]. At the same time, advancements in the
field of artificial intelligence (AI) are being used to automate
cyber defence measures [7], to develop AI enabled cyber
weapons [8], or to detect and predict software threats and
vulnerabilities [9], [10]. In particular, knowledge of vulnera-
bilities is an integral part in most of these cyber operations
to breach foreign IT-protection measures, and intelligence
services and military forces stockpile such critical information
without disclosing it for rectification [11], [12]. However, any

serious and capable exploit withheld by a state for its own
purposes becomes a potential threat for everyone, including the
state itself, its economy, and civil society [13] as the exploit
EternalBlue exemplified in 2017 [14], [15].

One way out of this dilemma is a so-called vulnerability eq-
uity process (VEP) [16], an institutionalized measure to regu-
larly assess the criticality of stockpiled exploits and vulnerabil-
ities to (re)consider their disclosure that could take place under
the leadership of extra-national entities, such as the United
Nations (UN) [17]. A major obstacle for such an approach
is the reluctance of participating parties to disclose sensitive
information about their own capabilities, which is generally
seen as giving up tactical advantages, effectively resulting in
an international arms race for offensive cyber capabilities [18].
Historically, such situations have been countered by efforts
to reach mutual agreements between states on arms control
and reduction measures, i.e., treaty-based agreements to limit
the risks of proliferation of weapon-enabled technology, to
prevent its use with potentially disastrous consequences, or to
reduce the risks of conflict arising by mistake or technological
failures [19].

With regard to the depicted development in cyberspace,
early political approaches to mitigate these threats have
been proposed by the UN [20], the OSCE [21], and other
organizations. But although first important steps towards an
effective cyber arms control, like the exchange of threat
information [22], [23], have been established, they are
not suitable for limiting or reverting the aforementioned
international cyber arms race of vulnerability stockpiling. So
far, no proposal focuses on this specific challenge and the
particular constraints of state actors, with their requirements of
confidentiality, their potential mutual mistrust, and individual
security concerns [24].

In this paper, we propose a technical solution called EX-
TRUST based on a multi-party computation approach that
allows multiple actors to compare vulnerability stockpiles
for matching entries while preserving their confidentiality.
This includes an approach for the unique machine-readable
identification of exploits that allows them to be checked for
matches. Our solution is designed for a zero-trust environ-
ment and does not rely on any preconditions of trust in

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

2

advance or assumptions of good nature. This contributes to
the development of measures for an international agreement
to deplete vulnerabilities while circumventing the problems
and impediments of intergovernmental cooperation.

Beside this contribution, this paper further aims to provide
an example of how politics is – sometimes – in need of
technical solutions, in this case even for challenges regarding
international security. As computer scientists and engineers
are the experts on the domain of cyberspace, shaping it by
developing software or even defining its constraints and rules
themselves, we would like to encourage taking the respon-
sibility that this entails seriously and support the peaceful
development of this globally shared domain.

The paper is structured as follows: Subsequent to this
introduction, Section II presents related work and elaborates
the research gap. Section III analyzes the requirements of
EXTRUST both on a conceptual and IT security level.
Section IV discusses how vulnerabilities can be uniquely
described in a machine-readable form that allows their com-
parison. Section V presents a Blockchain-based prototype
approach that exemplifies the intended system and its re-
quirements and discusses the challenges for a applicable EX-
TRUST implementation. Section VI presents our contribution
of a privacy-preserving exploit depletion system for zero-trust
relationships using multi-party computation. Section VII dis-
cusses the approach and evaluates it against the requirements.
It also presents different application scenarios beyond state ac-
tors. Section VIII concludes this paper and provides directions
for future work. In order to maintain readability, the technical
details can be found in the Annex in Section VIII.

II. RELATED WORK

Since our paper covers and combines different computer
science topics, this section summarizes the existing work
on malware identification (Section II-A), vulnerability mit-
igation (Section II-B), and promising cryptographic proto-
cols (Section II-C). Based on these descriptions, the research
gap is described (Section II-D), which is closed by our
approach.

A. Vulnerability Terminology and Malware Identification
Methods

An important prerequisite for comparing exploits – as the
core of a depletion system – is the ability to create determinis-
tic vulnerability descriptions. Early attempts were based on the
creation of so-called malware signatures [25], which function
like a fingerprint. Current malware detection approaches use
a different approach that is either based on the entire binary
code of the malware, i.e., the exploit and payload [26], the
compromised storage to create signatures [27] or even artificial
intelligence measures to automatically generate descriptions
via a Common Vulnerability Scoring System (CVSS) pre-
diction [28]. Beside the actual detection of malware, other
research area focuses on the description and identification of
exploited vulnerabilities. The popular national vulnerability
database (NVD) provides a semi-structured database of known
vulnerabilities [29], however, Dong et al. [30] showed that the

NVD entries are inconsistent compared to other vulnerability
databases. Compared to the common vulnerabilities and expo-
sures (CVE), the NVD entries differ in their announced project
names or versions. Alternative approaches were introduced by
Sadique et al. [31] with the Structured Threat Information
eXpression (STIX) and the Vocabulary for Event Recording
and Incident Sharing Framework (VERIS) [32] that can be
used to describe, share, and publish threat information. Both
definitions, STIX and VERIS, offer a syntax for different types
of threats, including malware, exploits, and vulnerabilities.
Some entry fields in NVD, STIX, and VERIS may contain
unstructured information that undermines unique descriptions.
Martin et al. [33] propose the common weakness enumeration
(CWE), a dictionary of weakness classes that can be used to
classify vulnerabilities, an approach we use in Section IV to
identify vulnerabilities.

B. Vulnerability Mitigation & External Depletion Measures

Vulnerability research and mitigation methods have been a
topic in IT security for several decades [34], [35], [36], [37].
One measure are so-called bug-bounty programs [38] like e.g.
HackerOne [39], which aim to attract IT security practition-
ers to penetrate advertised systems and services and report
loopholes in software or services. Other programs are run by
Mozilla, Facebook, and Microsoft [40], [41], [42] or Project
Zero [43] by Google, which focuses on the search for zero-day
vulnerabilities. These programs, which we further refer to as
external depletion measures, aim to identify vulnerabilities in
popular IT products to disclose them to the producers and get
them fixed as a depletion measure.

In contrast, internal depletion measures focus on an actor’s
secret exploit stockpile of already known, but not yet disclosed
vulnerability information. Such measures have not yet been
proposed before for the given application context of interstate
cooperation and international security.

Practical approaches at this international, intergovernmental
level have so far been limited to transparency and confidence-
building, rather than arms control and the non-proliferation or
disarmament of malicious cyber tools. [19].

C. Cryptographic Protocols

Our EXTRUST system is related to well-studied cryp-
tographic protocols like multi-party computation (cf. Sec-
tion II-C1), private set intersection (cf. Section II-C2), and
trusted hardware (cf. Section II-C3). These approaches are
further elaborated in the following.

1) Multi-Party Computation (MPC): The first approaches
to multi-party computation (MPC) of functions represented as
a Boolean circuit were proposed by Yao [44] for N = 2 parties
with constant round complexity, and by Goldreich, Micali, and
Wigderson (GMW) [45] for any number of parties N with
round complexity linear in the depth of the Boolean circuit.
Beaver, Micali, and Rogaway (BMR) [46] extended Yao’s
protocol to the multi-party case while maintaining the linear
round complexity. Based on this initial work, many research
projects followed, showing the practical feasibility of MPC for
many privacy-preserving applications, such as auctions [47],

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

3

set intersection [48], and machine learning [49]. Kamara et
al. presented an outsourcing technique [50], which allows N
parties to outsource the MPC protocol to n ≪ N parties.

2) Private Set Intersection (PSI): Private Set Intersection
(PSI) has been proposed to identify malware (cf. Section II-A)
in a single client and server environment [51]. A recent survey
and performance comparison of different PSI protocols by
Pinkas et al. [48] demonstrates that the approach proposed by
Pinkas, Rosulek, Trieu and Yanai [52] is currently the fastest
PSI protocol which can handle malicious security. In our
proposed application context, we have multiple parties, hence
we are mainly interested in multi-party PSI. Multi-party PSI
protocols with passive security are applied by Kolesnikov et
al. [53] and Inbar et al. [54]. A scalable, maliciously-secure
multi-party PSI protocol is presented by Hazay and Venki-
tasubramaniam [55]. Huang et al. [56] use a general MPC
framework to privately compute the set intersection between
two parties.

3) Trusted Execution Environment (TEE): Another promis-
ing approach for a privacy-preserving exploit depletion system
is to securely isolate the execution into a trusted execution
environment (TEE) [57], that allows untrusted data to be
computed in a secure environment that is isolated from all
other executions running on the same machine, where it
is protected against manipulation and disclosure. TEEs are
omnipresent in all Intel processors from the 6th generation
upwards as Intel Software Guard Extension (SGX). Although
many works use Intel SGX for efficient secure multi-party
computation [58], [59], [60], [61], [62], TEEs are not suitable
for applications when states are involved, since this would
require that state actors trust the hardware-producing countries
not to manipulate the TEEs, e.g., by including backdoors.

D. Research Gap

Above all, practical measures are a mandatory aspect of
potential arms control and disarmament treaties, as history and
insights into former weaponized technologies have shown [63].
Existing IT methods such as Multi-PSI [55] (cf. Section II-C2)
and secure hardware [62] (cf. Section II-C3) have not been
applied to exploit depletion, especially regarding the demands
and particular constraints of an interstate zero-trust environ-
ment. Such a protocol for pairwise PSI among N parties,
as required for a privacy-preserving exploit depletion system,
is currently not available. Thus, our approach EXTRUST
proposes a Boolean circuit that implements the desired func-
tionality via MPC (cf. Section VI).

III. REQUIREMENTS ANALYSIS

In this section, the requirements of EXTRUST are analyzed
as a system for reducing exploit stockpiles, resulting from the
chosen context of interstate relations. This list is divided into
conceptual requirements derived from the specific constraints
of the context of arms control, as well as the IT security re-
quirements in combination with the selection of the adversary
model.

A. Conceptual Requirements

As mentioned above, this paper focuses on cases in which
two or more parties stockpile vulnerabilities and exploits.
This reflects the character of arms control treaties, whose
“practical” part of active mutual control or (limited) coop-
eration measures are always based on bi- or multilateral
agreements [64] between a small group of states. Based on
a rational choice consideration [65], our approach builds upon
the following two premises, that we consider to be reflected
by states that stockpile vulnerabilities [66], as they resemble
the considerations behind a vulnerability equity process [16].
Firstly, we consider states to be aware, that withholding a
vulnerability poses a potential threat to their own IT systems.
Secondly, we consider that a vulnerability which is known
to more than one state is more likely to be considered a
candidate for disclosure, because its intended effect is probably
ineffective or at least uncertain and because disclosing the
vulnerability results in publicly available security patches that
support the state’s own IT security and also renders the
vulnerability worthless for everyone else.

On the other hand, all vulnerabilities are high-value assets
for the stockpiling party. Given the context of state interaction,
each party will try to avoid revealing any information that
can lead to the loss of tactical advantages, while trying to
extend these advantages by gaining information about the other
parties. In addition, arms control measures are established in
times of political tensions to avoid the outbreak of armed con-
flict. Based on these assumptions, we consider that EXTRUST
has to operate in a zero-trust environment in which parties
have to be incentivized to cooperate, while at the same time
assuming that other parties are either extremely reluctant to
disclose information, attempt to gain information for their own
interest, or are otherwise dishonest regarding their cooperation
and activities.

With these considerations in mind, EXTRUST aims to
require as little cooperation as possible due to this zero-trust
environment. This means that each party discloses only the
absolutely necessary amount of information, thereby retain-
ing all specific information about capacities and capabilities.
Additionally, each party should be able to perform its own
check for intersections at any time without relying on further
cooperation, dedicated data exchange, or any form of super-
ordinate institution. Furthermore, information already provided
should not be allowed to be altered, deleted, or corrupted.

In light of this context, the necessary measure needs to fulfil
the following conceptual requirements (RC):

RC1 The measure has to enable parties to add information
about vulnerabilities and exploits.

RC2 Intersection checks have to be able to be performed by
either party at any time without having to obtain the con-
sent of the other parties involved. A match is considered
as such if at least two different participating parties have
submitted identical information about vulnerabilities or
exploits.

RC3 The system has to send feedback when it detects an
intersection match.

RC4 Although real-time computability is not strictly neces-

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

4

sary for processes that are usually politically slow, such
as arms control measures, the system needs to be scal-
able with respect to the number of parties so that parties
can join or leave at any time. While previous arms
control treaties are usually established in a small circle of
state actors that participate in mutual control measures,
indicating there could be up to N = 5 participating
parties in a real-world arms control scenario, this should
not be the upper bound of our system.

RC5 The system should be operated decentralized and not
require a specific neutral authority to operate or maintain
the system.

B. Adversary Model

The two most common adversary models are semi-honest
(passive) and malicious (active) adversaries [67]. While semi-
honest adversaries follow the underlying rules and procedures
(in technical terms the so-called protocol) and try to extract
as much information as possible from the transcript, malicious
adversaries may arbitrarily deviate from the agreed rules.
Given the zero-trust environment in the context of EXTRUST,
we consider an active or malicious attacker as adversary
model. Although technical security measures that protect
against semi-honest adversaries are more efficient than those
against malicious adversaries, we must consider state actors
that might maliciously manipulate arms control computations
and outcomes. Additionally, we assume a dishonest majority,
i.e., up to N − 1 parties may be malicious. The motivational
scenario of EXTRUST is a highly security critical one in
which top secret information may be exchanged. Hence, it
should withstand several passive attacks, like eavesdropping,
and also be shielded against active attacks, such as flooding
or brute-force attacks. We have therefore chosen the model of
the stronger adversary in contrast to the passive, semi-honest
adversary. This decision also covers the application context of
the zero-trust relationship between the actors involved.

C. Technical and Security Requirements

In addition to the conceptual requirements, the approach
must meet additional security expectations to provide an ap-
plicable and secure measure of exploit depletion in a zero-trust
environment. The requirements reflect the need for confiden-
tiality and are important to motivate stakeholders to participate.
These technical and security requirements (RS) are:
RS1 The system must ensure the confidentiality of vulnera-

bility or exploit information against any party.
RS2 Submitted data should not be able to be withdrawn,

modified, or corrupted by any party.
RS3 The system needs to prevent false positive intersection

results.
In the following, after discussing the identification of vul-

nerabilities as a necessary prerequisite of our system, we
present a prototype solution for EXTRUST that addresses
these requirements and illustrates its inherent challenges.
Afterwards, we present our contribution of a MPC-based
EXTRUST.

{
"cpe": "cpe:2.3:o:tp-link:wdr7400_firmware:-:*:*:*

↪→ :*:*:*:*",
"cwe": 120,
"fun": "copy_msg_element"

}

Listing 1. Vulnerability Identifier for CVE-2020-28877

IV. IDENTIFIER OF VULNERABILITIES

In this section, we propose a unique, machine-readable
identification method for vulnerabilities to be able to match
them. The mathematical description of the required properties
and the associated challenges can be found in the Annex and
are referenced here.

A. Machine-Readable Vulnerability Identifier

At its core, EXTRUST privately matches vulnerabilities or
exploits of different parties. This requires using a vulnera-
bility description method that results in the same machine-
readable descriptions for the same vulnerability1. An estab-
lished approach to describe and thus identify vulnerabilities
is provided by vulnerability databases like the NVD. The
NVD’s entries, for example, contain information used for
identification. Their semi-structured format, however, makes it
practically impossible for individuals to independently create
the same identifier for a vulnerability. Therefore, we use
the approach of Kuehn et al. [68] to achieve uniqueness,
i.e., we adjust the NVD’s entry information by removing
any free-form pairs and pairs that provide no information
about the vulnerability itself (e.g., the CVE-ID), align the
structured information with the vulnerability descriptions, and
add information about the vulnerable function, extracted from
the vulnerability description.

The remaining fields are CWE and common platform enu-
meration (CPE) with the addition of the vulnerable function,
which are structured and algorithmically comparable. The
CWE [69] defines hierarchical layers of vulnerability weak-
ness classes, while the CPE [70] provides a machine-readable
way to describe platforms. If a vulnerability affects multiple
platforms, we use separate vulnerabilities for each affected
platform. The resulting vulnerability identifier is depicted
in Listing 1 (for CVE-2020-28877).

B. Analysis

Using a simple object notation for the vulnerability identifier
offers flexibility and extensibility, and by adding CPE and
CWE as well as the vulnerable function as core elements, iden-
tifiers can be specific enough to create matching values when
different actors describe and submit the same vulnerability or
exploit. This is essential to identify matching vulnerabilities.

The main limitation of the vulnerability identifier’s defini-
tion is based on a trade-off between the properties accuracy
and ambiguity. Currently, it is still possible to describe two

1See the Annex section ”Required properties for a machine-readable
vulnerability identifier”.

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

5

different vulnerabilities with the same identifier, or to use two
different identifiers for the same vulnerability2. This leads to
false positives (two different vulnerabilities are mapped to
one identifier) or false negatives (the same vulnerability is
mapped to two different identifiers), respectively, depending
on the level of detail implemented into the identifier. How-
ever, there are possibilities to adjust the identifier definition
accordingly. Increasing the amount of information captured by
the identifier makes the identifier more specific but introduces
more ambiguity, i.e., false negatives. Parameters to be added
are the common vulnerability scoring system (CVSS) param-
eter information (e.g., impact information) or the vulnerable
path (i.e., the filename in which the vulnerability resides) [68].
Another way to adjust the identifier is the CWE’s hierarchy
depth. CWE classes are hierarchically ordered and thus offer
generalization or specification. Including relations of the used
CWE class increases the specificity of the identifier and could
help to circumvent cases where identifiers use different CWE
subclasses of the same top level class. At this point, we want
to stress that in the presented scenario (cyber arms control)
false positives must be avoided, while false negatives are
tolerable. If false positives are a common problem in such
a system, it would drastically lose acceptance among states
that are still interested in stockpiling vulnerabilities.

The size of the proposed identifier space is restricted by the
number of CWE classes, the size of the CPE directory, and
the possible function names, which serve as secret information.
Individually, these spaces can be approximated in their size.
For the space of possible function names FN , we assume a
clean coding style, i.e., function names are descriptive and use
at most three English words with any kind of connector (e.g.,
camel case or underscores), which results in ≈ 281 identifiers3.

As argued, the presented approach is sufficient to describe
vulnerabilities uniquely. It serves our needs with a trade-
off in detail that avoids both different vulnerabilities being
described by the same identifier as well as the same vulnera-
bility being described with different identifiers. Based on the
current limitation of the identifier space, brute-force attacks
remain a problem and efforts should be made to increase the
identifier space. As an alternative to the proposed definition
of identifiers, our system EXTRUST can work with any other
scheme that is concise, structured, and unambiguous.

V. EXTRUST USING BLOCKCHAIN

To illustrate the challenges involved in implementing a
privacy-preserving exploit depletion system, we have chosen
a simple, straightforward prototype based on a Blockchain
implementation, referred to hereafter as BC-based EXTRUST.
Although this approach entails security flaws from a theoret-
ical perspective, we want to use this prototype to illustrate,
test, and analyze possible solutions regarding the requirements
and the proposed depletion process, as an introduction for
our multi-party computation-based approach presented in Sec-
tion VI. This section presents the architecture and proof-of-
concept implementation of this prototype and concludes with

2See the Annex section ”Ambiguous vulnerability identifier”.
3See the Annex section ”Approximation of the vulnerability identifier

space”.

a discussion of the requirements met as well as the identified
constraints.

A. System Architecture and Procedure

In terms of conceptual requirements, BC-based EXTRUST
should run in a distributed setting with no central trusted au-
thority, with a complete, secured, and tamper-resistant history
of all submitted information and should allow asynchronous
intersection checks that can be performed by each participating
party independently.

We have developed a prototype based on a private Block-
chain technology [71], [72] that provides all of these features.
A private Blockchain is a distributed chain of blocks con-
taining transactions, where each block references its previ-
ous block via hard-to-calculate mathematical challenges and
cryptographic hashes to reference the block. This provides a
tamper-proof history of all submissions, as any modification
would invalidate the adjacent entries. The data storage part
of a Blockchain, the so-called ledger, is replicated to all
participants and automatically synced between them. In private
networks, access to it is walled by an access control man-
ager (ACM). The interfaces for interaction with the ledger are
called smart contracts. With regard to the system architecture,
the ledger provides the storage space, the smart contract is
responsible for the submission and comparison mechanism,
and the ACM controls the access as well as the different
layers of interaction permissions via roles and associated
authorizations. To maintain the confidentiality of the submitted
vulnerability identifiers, we secured the information using
cryptographic hash functions [73].

The overall procedure begins with the setup of the Block-
chain instance (nodes) by each participating party and their
interconnection to build an evenly distributed network. To
submit a vulnerability, the vulnerability identification method
we propose in Section IV is used to create an identifier
for the specific vulnerability, which is then cryptographically
secured using a hash function and finally stored in BC-based
EXTRUST. Afterwards, any participating party can perform a
transaction, which checks for intersections between all hashes
stored in the ledger and logs the output on the ledger. This
way, a history of all actions performed is ensured, which is
accessible to any involved party, including intersections. Nev-
ertheless, parties that do not know the plaintext vulnerability
identifier cannot obtain any information other than the fact that
an intersection occurred.

B. Implementation

To focus on developing a proof-of-concept implementation
of BC-based EXTRUST, we decided to utilize a private
Blockchain framework [74] as it provides all relevant tools for
the interaction of the actors with the system, the data structures
for storing information, and all necessary data operations for
reading, writing, and verifying information within the stored
data. We have selected the Hyperledger Fabric [75] Block-
chain framework because it is open source, actively maintained
and well documented, and provides the rapid prototyping

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

6

Access Control

Blockchain network

r1 r2

w1 w2

Hash Hash

Fig. 1. System architecture for BC-based EXTRUST. ri and wi denote readers and writers of actor i.

environment Hyperledger Composer [76] with a boilerplate
implementation for each part of the Blockchain network.

With regard to the permissions of participants using BC-
based EXTRUST, we envision two roles: Readers, who can
read the entire ledger and perform the transaction that checks
for matching items; and writers, who can only submit items
(see Fig. 1). This restriction is only necessary due to the use of
our chosen framework4, otherwise, a party’s submission may
be intercepted and copied by other parties. The theoretical
concept does not require this separation, because no party
would be able to access other parties’ information.

The items which are submitted and stored into the ledger
are the vulnerability identifiers, as described in (Section IV).
As the plain vulnerability identifier must never be inserted into
the Blockchain network to prevent its exposure to all parties
involved, it is obscured before being submitted. We generate
a cryptographic hash of a normalized JSON representation of
the vulnerability identifier via SHA3-512 ([77]), following
the NIST’s policy on hash functions [78]. This provides a
256-bit security level.

To interact with BC-based EXTRUST, the prototype
system provides two transactions: The simple submission
of hashed vulnerability identifiers and the transaction that
checks the stored hashes within the ledger and trig-
gers an event along with references to matching items,
checkIntersections5.

We want to stress that this prototype implementation does
not yet take performance into account, as this is no core
requirement of EXTRUSTand its proposed arms control ap-
plication.

C. Discussion of BC-based EXTRUST

As indicated earlier, the development of IT measures is
a novel approach in the field of technical tools for cyber
arms control that has to balance conflicting objectives to
a certain extent. For arms control, the aspect of minimum
requirements for cooperation between the parties is essential,
as it establishes the lowest possible barrier for participation.
This is crucial for situations such as the intended one, in
which trust cannot be assumed as a given motivation for
cooperation. In previous treaties, this often meant a certain

4As framework, we chose Hyperledger Composer.
5See the Annex section ”The checkIntersections transaction of BC-based

EXTRUST”.

degree of pragmatism regarding the acceptance of “gray areas”
and the possibility of non-compliance. The opposite objective
is the requirement of technically secure solutions, as this too
provides important incentives for participation. This in turn is
likely to result in protocol specifications creating operational
conditions that potential participants are not prepared to ac-
cept.

Considering the requirements, the Blockchain approach
provides a manipulation-proof and distributed storage of all
submitted information. Calculations are distributed and per-
formed independently, thereby mitigating the need for a trusted
third party to maintain the shared information, as well as any
other form of cooperation beyond the actual submission. The
system can include additional parties without adjustments or
significant impact on the performance of the system, beyond
the network capacity necessary to synchronize the stored
information [79]. In addition, the processing of submissions is
not time-critical, which is considered a bottleneck for massive,
high-traffic Blockchain applications [80], [81]. By securing
vulnerability identifiers, the confidentiality of the information
is – at least theoretically – maintained both in submission and
in intersection detection.

On the other hand, the Blockchain-based prototype has
serious IT security issues, both for active attackers (like non-
participating state parties that try to break the system to
gain advantages and reveal secret information) and fraudulent,
semi-honest state participants that try to gain information
which goes beyond the agreed exchange. Notably, the in-
formation contained in the distribution of the ledger is vul-
nerable to brute-force attacks by testing hashes, as foreign
countries could generate possible vulnerability descriptions
and test them against their local ledger. The PSI literature
has demonstrated that private elements cannot be hidden by
simple hashing [82], [83]. The probability of creating an
existing hash is based on the size of the identifier space and
influenced by the number of its properties and values. As the
identifier space of BC-based EXTRUST is very small (28
bit, cf. Section IV-B) brute-force attacks are very efficient
and can be successfully exploited. In addition, the brute-
force attack is completely local since states have a local copy
of the whole ledger. Consequently, states would not even
notice if a brute-force attack was exploited to find all ledger
vulnerabilities. The brute-force attack can be slowed down (but
not prevented) by using a difficult to parallelize hash function

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

7

such as Argon2 [84]. Extending the identifier space for the
vulnerability by more complex identifier descriptions is not
an option either, as this increases the probability of describing
the same vulnerability differently.

The Blockchain also faces other attack scenarios, such as
the so-called 51% attack, which allows attackers to manipulate
the ledger [85]. Attackers could also use more subtle ways to
create intersections to test foreign submissions by creating fic-
tional vulnerabilities for rare software systems based on clever
and informed guesses. This could also be used for targeted
vulnerability suppression if a participating party creates and
submits specific vulnerabilities, intentionally wrongfully sig-
nalling its possession to force the vulnerability to be disclosed.
In addition, a dishonest state party could clone and resubmit
hashes under its own flag, which would also cause BC-based
EXTRUST to false signal to the original submitter that this
particular vulnerability can be eliminated. However, such a
cheat gives the attacker only a slight advantage, as they do
not know what the cloned vulnerability information contains,
and are likely to attract attention if performed regularly. A final
IT security issue concerns passive adversaries that gain access
to the ledger, as well as the complete disclosure of the ledger
to non-involved third parties. Besides the brute-force attack,
the attacker will be able to learn which hashes belong to which
party via timing correlations, detecting the amount of different
participating actors as well as the amount of submitted hashed
items stored by each actor.

The BC-based EXTRUST prototype has shown that it
provides the conceptual requirements that arise from the arms
control context. Regarding the attack scenarios described, it is
important to emphasize that for this application, any attempt
to attack or misuse the system is contrary to the principles
of the confidence-building aspect of such a mutual measure
and its political signal of de-escalation. It is further expected
that all parties comply with the defined rules to at least
achieve a positive outcome for their own national security.
Nevertheless, this expectation needs to rest upon a secure
protocol that inherently prevents fraud and guarantees the
promised confidentiality.

The following section presents the approach of MPC-based
EXTRUST, an arms control measure that provides this level
of security.

VI. EXTRUST USING MULTI-PARTY COMPUTATION

This section presents our approach for an MPC-based EX-
TRUSTto develop an exploit depletion system under the con-
ditions of an untrusted environment that fulfils the discussed
conceptual and security requirements (Section III), while
avoiding the security problems that our prototype revealed
(Section V). This approach is based on an interactive Multi-
Party Computation (MPC) protocol as grounds for our MPC-
based EXTRUST architecture. In the following, we present
the concept and design of MPC-based EXTRUST technical
details can be found in the Annex in section ”PSI-variant
Boolean circuit for multiple parties”.
Secure MPC [86], [87] enables N parties to securely compute
a commonly agreed public function f on their respective

secret inputs x1, . . . , xN without revealing anything other than
the result of the calculated function f(x1, . . . , xN). MPC
guarantees that each of the N parties will not learn any
information (e.g., input from the other parties or intermediate
results of the computation) other than what a party would
learn in the ideal world with a trusted third party. In the ideal
world, all parties send their inputs x1, . . . , xN secretly to a
trusted third party, which then locally computes the function
f(x1, . . . , xN) and broadcasts the result to the N parties. In
the proposed context of arms control, even if such a trusted
third party existed (e.g., in the UN framework), it would
probably not be accepted by all state actors or, at the very
least, would raise the barrier to participation in the proposed
measure (see Section III-A).

In MPC, the function f that shall be computed is represented
as a Boolean circuit. A Boolean circuit is a logical function
whose operations are so-called Boolean gates. A Boolean gate
takes a set of Boolean inputs (i.e., either 0 or 1) and computes
one Boolean output. We represent our MPC-based EXTRUST
functionality as a Boolean circuit as efficient cryptographic
protocols exist that can securely evaluate Boolean circuits.
A Boolean circuit consists of inputs, outputs, and Boolean
gates that have two inputs and one output in the Boolean set
{0, 1}. The input of a gate can either be one of the inputs of
the Boolean circuit or an output of a previous gate. In MPC,
Boolean circuits usually only consist of AND and XOR gates,
as any functionality can be realized using these two gate types.
A two-input AND gate outputs ‘1’ if both of its inputs are set to
‘1’, while a two-input XOR gate outputs ‘1’ if exactly one (but
not both) of its inputs is set to ‘1’. For the actual algorithm that
processes the submitted information and checks for collisions
– the so-called protocol – we use the BMR protocol [46] and
refer to Braun et al. [88] for a detailed protocol description.
We further use a well-established outsourcing technique [50]
to distribute the information processing for a group of N
parties to n ≪ N parties. This setting for our MPC approach
is shown in Fig. 2. In summary, a subset of n from N
(state) parties interactively run an MPC protocol on a Boolean
circuit, which computes the functionality of EXTRUST. This
setting allows us to evaluate the functionality of EXTRUST
in a privacy-preserving manner, while reducing the number of
active parties that are fully involved in the computation ensures
the scalability of MPC-based EXTRUST.

The protocol requires that the parties have sorted their inputs
locally before they are fed into the MPC protocol. To verify
this, we use the Boolean circuit and open intermediate values
so that the parties can abort the protocol execution if a mali-
cious party has not sorted its inputs correctly. When opening
these values, the remaining intermediate values before and
after the opening process must be protected to allow further
secure computation with them. Many efficient maliciously-
secure MPC protocols provide this property, known as reactive
MPC, e.g., [89], [90], [91], [92], [93]. Apart from checking
correctly sorted sets, we use reactive MPC to maintain the
state of the secretly shared inputs after the end of a protocol
run, so that submitted vulnerabilities do not need to be secretly
shared again in the next iteration.

This MPC approach allows us to develop a privacy-

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

8

p2 p3

p1 p4

Fig. 2. MPC setting with four participating parties p1, . . . , p4.

preserving exploit depletion system that fulfils the require-
ments of the arms control context (Section III).

A. System Architecture

Our complete MPC-based EXTRUST architecture works as
follows (see Fig.2): N parties try to find intersections of their
own identified vulnerabilities between themselves and at least
one other actor. These N actors securely evaluate a Boolean
circuit (cf. Section II-C1), consisting of AND and XOR gates6,
that takes as input the known vulnerabilities and exploits of the
actors, which are represented as hash values (cf. Section IV),
compares them to find intersections, and finally outputs all
intersections found to the respective parties. This circuit,
however, is not constant over the lifetime of MPC-based
EXTRUST as it depends on the number of parties N (states
can be added/removed) and inputs u (vulnerabilities can be
added). The participating parties perform an initial MPC
protocol prior to the actual execution to determine the
maximum number of vulnerabilities among all parties, which
then determines the number of inputs for the Boolean circuit
that is evaluated by the MPC protocol. Now that every party
knows the number of inputs to the Boolean circuit, each party
in the fixed subset n of the N parties locally compiles the
Boolean circuit that is inserted into the MPC protocol, i.e., no
further interaction is required by the parties to agree on the
Boolean circuit. Malicious-secure MPC protocols ensure that
parties, who compiled a fake Boolean circuit that does not
compute the agreed functionality, are identified by the other
parties. Regarding the already submitted vulnerabilities, a
party cannot revoke or modify submitted information because
they remain in the input list of the N actors. The parties
can opt in and out by sending a notification message to
the N servers. Only the inputs of the participating parties
that are logged in are taken into account for the computation.

1) Complexity and optimization of the Boolean circuit:
For N parties, state-of-the-art MPC protocols require sending
and receiving O(N) messages for each AND gate in the
Boolean circuit [46], while XOR gates can be computed
locally without any interaction between the parties [94].
Consequently, we optimize the number of AND gates in our
Boolean circuit that is evaluated via MPC. In order to prevent

6See the illustrating figure for regarding the section ”PSI-variant Boolean
circuit for multiple parties” in the Annex.

the concrete set sizes of the individual parties from being
leaked, we specify an upper limit u that determines how
many inputs a party feeds into the circuit. If a party has
fewer than u inputs, it fills the missing inputs with random
dummy values, which will not represent any vulnerability and
thus will not occur in any intersection as the probability that
two parties independently choose the same random dummy
values is negligible. On a high level, every party inputs two
unique keys – k0 and k1 – for each of its vulnerabilities
into the Boolean circuit. The Boolean circuit outputs k1
if this vulnerability is part of an intersection or k0 if only
the respective party knows this vulnerability. Although the
resulting keys are leaked to all parties, only the party who
input the keys learns any information about the intersecting
identifiers of their vulnerability.

2) Using Private Set Intersection to calculate collisions:
To calculate the intersection of different stockpiles, we use
the Private Set Intersection (PSI) protocol. PSI allows two
parties to securely compute the intersection of their private
sets without leaking any information about set elements that
are not part of the intersection to the other participating party.

Multi-party PSI [55] extends the PSI functionality to
more than two parties, i.e., the parties jointly compute the
overall intersection of all their input sets without leaking
any information of set elements that are not included in the
intersection. Unfortunately, multi-party PSI only outputs the
set intersection of all input sets. However, in our exploit
depletion system we search for intersections between at least
two sets. A possible solution to this is to implement two-party
PSI protocols between each pair of parties. However, this
would require a quadratic number of protocol runs in the
number of parties. Even more critically, this approach would
reveal which other party has a common vulnerability. Instead,
we use a generic MPC-based approach for our MPC-based
EXTRUST application that is based on Huang et al.’s [56]
Boolean circuit for two-party PSI which we extended into a
multiple parties variant.

3) Instantiation: There are many MPC frameworks based
on secret sharing and/or garbled circuits, e.g., [95], [96], [97],
[98], [99], [100], [101], [102]. Table I lists and compares
several MPC frameworks with malicious security.

Since untrusted actors deal with highly sensitive infor-
mation, we need security against malicious parties actively

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

9

Framework # Parties N Threshold t

ABY3 [101] 3 1
Sharemind [100] 3 1
ASTRA [99] 3 1
BLAZE [98] 3 1
Trident [97] 4 1
MOTION [88] ≥ 2 1
SCALE-MAMBA [96] ≥ 2 N − 1
MP-SPDZ [95] ≥ 2 N − 1

TABLE I
COMPARISON OF MPC FRAMEWORKS THAT ARE SECURE AGAINST
MALICIOUS ADVERSARIES, COMPUTE ON BOOLEAN CIRCUITS AND

ALLOW UP TO t CORRUPTIONS.

Vulnerabilities \ # States 2 5 10 15
100 2 14 62 146
500 4 31 134 314

1000 7 49 210 492
TABLE II

RUNTIME IN MINUTES OF MPC-BASED EXTRUST FOR VARIOUS
NUMBERS OF MAXIMUM VULNERABILITIES AND STATES.

manipulating the computation to either learn more information
or prevent other parties from receiving the correct output.

Current MPC frameworks that meet these requirements are
MP-SPDZ [95] and SCALE-MAMBA [96]. We recommend
the use of MP-SPDZ, which implements, among other pro-
tocols, the constant-round BMR protocol [46], which has
benefits over the multi-round protocols of SCALE-MAMBA
in high-latency networks. BMR is secure against malicious
parties and a dishonest majority (i.e., up to N − 1 par-
ties can be corrupted). If the number of computing servers
is fixed to N = 3 one can use ABY3 [101], Share-
mind [100], ASTRA [99], or BLAZE [98]; if the number
is fixed to N = 4 parties, Trident [97] can be utilized. The
MOTION framework [88] allows MPC among any number
of parties N , however, it does not fulfil the full-threshold
requirement of t = N − 1. Table I shows an overview of
the mentioned MPC frameworks.

B. Feasibility of MPC-based EXTRUST implementation

MPC-based EXTRUST completely relies on the security
properties of the underlying multi-party computation (MPC)
framework. While most MPC frameworks are implemented
for academia usage, Bosch developed Carbyne Stack an open-
source cloud stack for scalable MPC applications [103] that
is also suited for real-world usage. As the name suggests,
the long-term plan is to make this MPC framework scalable
for many participating parties. As this entire project is open-
source, a group of states can use their implementation as basis
MPC-based EXTRUST.

C. Evaluation of the scalability of MPC-based EXTRUST

In this section, we estimate the feasibility and scalability of
our MPC-based EXTRUST. Since we know the complexity of
our Boolean circuit, we can estimate the scalability of MPC-
based EXTRUST.

In a realistic setting of our proposed application con-
text of arms control, we have the following parameters

for our benchmarks in Table II: number of parties / states
N ∈ {2, 5, 10, 15}, maximum number of inputs u ∈
{500, 1000, 1500}, and length of vulnerability identifier
hashes σ = 256 bit. With these parameters, the size of our
Boolean circuit is ≈ 4.8 · 107 ANDs.

To estimate the runtime of our system, we generate a
random circuit with the same number of AND gates and two
XOR gates per AND gate. Since XOR gates can be evaluated
in the BMR protocol without any communication [94], it is
less important to determine the exact number of XOR gates,
as communication is the bottleneck of MPC.

For malicious MPC with a dishonest majority, as required
by our adversary model presented in Section III-B, we use
the constant-round BMR protocol [46] using the MASCOT
protocol [104] to compute the garbled tables as implemented
in the MP-SPDZ framework [95]. To conduct our experiments,
we use five servers, each equipped with an Intel Core i9
processor with 2.8 GHz and 128 GB DDR4-RAM. The round-
trip network latency in our simulated WAN setting is about
100 ms and the bandwidth 90 Mbit/sec. We take the average
runtime of three executions.

The execution time of our circuit is about 31 minutes. This is
an acceptable runtime for governmental actors, as the protocol
is run daily or weekly. However, the size of the Boolean circuit
and the cost of computing each AND gate are quadratic in the
number of servers N . Therefore, our scheme will not scale for
a large number of parties N ≫ 10.

We can improve the scalability for these scenarios by
outsourcing the computation to n ≪ N non-colluding
servers [50]. Here, the N parties distribute their input to the n
servers, which together run the MPC protocol and distribute
the result. An advantage of this method is that all N ≫ n
parties may be malicious as long as they can trust that the n
servers are not colluding. This improves the cost of computing
an AND gate to O(n2).

VII. DISCUSSION

This section will discuss our approach. As the main con-
tribution of this paper is the MPC-based EXTRUST, the
BC-based EXTRUST prototype is not covered here, as it
was discussed in Section V-C. In the following, we will
analyze our MPC-based EXTRUST regarding the conceptual
requirements RC1 - RC5 (Section VII-A) and the security
requirements RS1 - RS3 (Section VII-B) necessary to create
incentives for states to participate. This section also reviews
the scenarios in which EXTRUST can be of use, followed
by an outlook on possible future applications (Section VII-C).
An overview of which conceptual and security requirements
are fulfilled by MPC-based EXTRUST and BC-based EX-
TRUST, respectively, is provided in Table III. The bracketed
checkmarks in the table highlight requirements, that are only
fulfilled if we can exclude the 51% attack against Blockchains.

A. Conceptual Requirements
The MPC-based EXTRUST architecture allows participat-

ing parties to input information about their known vulnerabil-
ities and exploits without openly revealing sensitive informa-
tion to other parties (RC1). The output of the computation is

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

10

Requirement BC-based EXTRUST MPC-based EXTRUST
RC1 (✓) ✓
RC2 ✓ ✗
RC3 ✓ ✓
RC4 ✓ ✓
RC5 ✓ ✓

RS1 ✗ ✓
RS2 (✓) ✓
RS3 ✓ ✓

TABLE III
COMPARISON OF WHICH CONCEPTUAL RC1 - RC5 AND SECURITY

REQUIREMENTS RS1 - RS3 ARE FULFILLED BY BC-BASED
EXTRUSTAND MPC-BASED EXTRUST.

the matching vulnerabilities and exploits between the parties
(RC3). Since the output is computed interactively between the
parties, MPC-based EXTRUST is entirely decentralized and
does not require a trusted third party (RC5).

The solution is theoretically scalable to N = 10 parties
(RC4). However, the more parties are involved in the protocol,
the more inputs and data have to be exchanged between
these parties, i.e., the approach has a complexity O(N2), but
usually N ≈ 10 (cf. Section III-A). However, as explained
in RC4, real time computability is not a critical requirement
and longer computation times are no problem for such highly
politically organized processes like arms control, which often
require days or weeks for the full formal process and the
involvement of all necessary stakeholders. In Section VI-C, we
propose to outsource [50] the computation to n ≪ N parties,
which improves the performance of MPC-based EXTRUST.
Considering the context of arms control, such a scenario is
only applicable and likely if the outsourced computation is
performed by neutral institutions that are not involved in the
arms control measure itself, since in this way none of the
parties involved need to trust that the other participants will
not share information outside the protocol. Such delegation is
not uncommon for arms control measures. An example is the
Joint Comprehensive Plan of Action (JCPOA), a multilateral
treaty known as the Iran nuclear deal [105] between Iran,
China, France, Russia, the United Kingdom, and Germany.
The International Atomic Energy Agency (IAEA) manages
and organizes all aspects of this treaty via independent bu-
reaus, entrusted laboratories, UN working groups, and neutral
experts for investigation field trips. Regardless, for practical
arms control measures as our proposed depletion system, the
amount of involved parties usually does not exceed a single-
digit number and is often established between a small group
of states.

Unfortunately, requirement RC2 is not met because intersec-
tion checks now require interaction, as the participating parties
are required to exchange data. However, exactly this property
of EXTRUST is the key to avoid local brute-force attacks,
to which BC-based EXTRUST is vulnerable (cf. Section V).
Although, in the context of arms control, the minimum thresh-
old for cooperation to which states must commit provides
an incentive to join the measure, this requirement is not
mandatory to practically operate EXTRUST. As a privacy-
preserving arms control measure is more critical than the de-
sire to independently check for intersections, we consider this

a weak limitation that does not undermine the practical value
of our approach, especially when considering that EXTRUST
fulfils all other conceptual requirements.

B. Security Requirements

MPC-based EXTRUST fulfils all three security require-
ments presented in Section III-C. A notable advantage of
MPC-based protocols is that the participating parties can only
derive information from their own inputs and the outputs
received, i.e., the parties do not learn more information in
the MPC-based EXTRUST than in EXTRUST with a trusted
third party that receives the inputs from all parties and outputs
the intersections. This means that no more information is
revealed in the protocol transcript than an adversary would
learn in the ideal world. In contrast to BC-based EXTRUST
from Section V, local attacks (e.g., brute-forcing specific
hash values) are not possible in MPC-based EXTRUST. In
addition, an adversary is not able to copy vulnerabilities or
exploits from other parties to output an invalid intersection
because the inputs are inaccessible to the other parties. Thus,
requirement RS1 is completely fulfilled.

Once the inputs are submitted in the MPC protocol, the
parties are not able to withdraw or modify them (RS2).
A situation in which all state actors jointly manipulate the
protocol will never happen, since they could otherwise share
their vulnerabilities in plain anyway.

False positive intersection (RS3) results are possible with
a negligible probability. A false positive is possible if two
different vulnerabilities are mapped to the same hash value.
Since we use a collision-resistant hash function, the probability
of other collision scenarios is negligible. In addition, a false
positive may occur if two parties independently choose the
same key identifiers. Due to the usage of 256 bit key identifiers
and a robust random generator, the probability of this situation
is negligible as well.

Above all, the security and confidentiality of the assets
to be shared are key incentives for establishing an arms
control measure. As MPC-based EXTRUST fulfils all security
requirements, it is suitable for a real world application without
discouraging states from using it.

C. Further Application Scenarios

Beside the proposed context, EXTRUST can also be useful
in other application scenarios, some of which will be discussed
in the following.

At present, our approach concentrates exclusively on state
actors as addressees. However, organizations or individuals
might also be interested in using such a system. As explained
in Section II-B, bug-bounty programs and vulnerability
research projects have similar goals: to reduce the spread of
vulnerabilities to secure systems. Here, using the aggregated
information from the external stockpile depletion measures
and integrating it into EXTRUST can increase the speed of
detection of matching rediscoveries in stockpiles. This can be
achieved by using writers for selected public services or other
institutions that intend to contribute to cybersecurity, which
feed their hashed vulnerability identifiers into EXTRUST. In

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

11

such a setting, the hashing of information is as important as
in EXTRUST’s motivational scenario to prevent the material
from being disseminated for malicious cyber operations. The
use of EXTRUST in a purely corporate environment is
probably not possible, as organizations like Zerodium [106]
are primarily looking for exploits to sell. A similar bug-
bounty related approach could focus on examining discovered,
potential zero day vulnerabilities against other submitted
but not yet publicly disclosed vulnerabilities. The history of
submissions would allow submitting actors to claim their first-
submitted-reward later on, once the information is disclosed. In
this way, the first finder could be paid out without the hackers
having to reveal their discovery in advance.

VIII. CONCLUSION AND FUTURE WORK

Given the continuous developments in the field of
cybersecurity and especially the expected advantages of using
artificial intelligence measures to detect, mitigate or even
defend against cyber threats, the exclusive knowledge of
vulnerabilities is an essential component for state actors to
stay ahead of competitors. Under the assumption, that this
undermines national as well as international cybersecurity,
our paper focused on the depletion of vulnerabilities and
exploits that are being stockpiled by state actors. While the
disclosure of vulnerabilities at the national level through
regulatory processes is becoming more and more of an issue,
cooperation on disclosure at the bilateral or multilateral level
is still lacking. We discussed that an important obstacle to
such measures is the comprehensible restraint of states to
give up their accumulated intelligence information in order to
compare stockpiles and unnecessarily reveal unique exploits
or other secret assets.
To develop a technical measure in such a zero-trust scenario,
we identified structural as well as IT security requirements for
the detection of intersections in different exploit stockpiles.
Based on these, we discussed and designed (i) a novel
identification scheme for vulnerabilities and exploits and
(ii) an external, privacy-preserving exploit depletion system
named EXTRUST. We have identified the requirements
for this depletion system for zero-trust relationships and
shown that the technical security requirements could hamper
the political incentives for states to cooperate. We have
illustrated this challenge by developing a prototype for a
depletion system based on a Blockchain. The presented
MPC-based EXTRUST system handles this dualism by
focusing on the IT security of a depletion system while
fulfilling most of the conceptual requirements. It stores the
detected intersections, while the submitted vulnerabilities
are protected by the MPC protocol and thus remain hidden
from all involved actors. However, one limitation of this
approach is that it is vulnerable to secret agreements by
multiple actors, as they could add vulnerabilities and remove
them from the intersection – an edge case that is not an
option in the proposed arms control context. We also argued
that MPC-based EXTRUST is currently not able to fulfil
all conceptual requirements, as participating states need
to explicitly cooperate and share obfuscated information,

which could be a disadvantage regarding its implementation.
Nevertheless, we have shown that the strength of the MPC
protocol lies in the fact that an adversary cannot obtain more
information from the joint computation than if a trusted third
party were to compute the intersections. The EXTRUST
system uses a novel exploit identifier and discussed how this
identifier could be improved in different scenarios to address
the trade-off between the uniqueness and ambiguity of the
properties. We believe that this provides a secure measure
which fulfils the state’s need for secrecy and yet at the same
time can contribute to the reduction of vulnerability stockpiles
to foster the public IT security through the disclosure of
vulnerabilities. We discussed further application scenarios
beyond the specific context of cyber arms control with
different parties comparing their vulnerability stockpiles. We
demonstrated that such an approach could be facilitated for
external depletion measures such as bug-bounty programs.
Such measures could potentially be extended so that even
private actors could contribute to the internal exploit stockpile
depletion process by adding external information about the
depletion into EXTRUST.

As discussed, further evaluation and study of our concept
is recommended, in particular in terms of the definition
of the identifier. We discussed that a current limitation of
the identifier is the necessity to find a sweet spot in the
accuracy regarding the description of a security vulnerability
that prevents duplicate descriptions of the same identifier
while avoiding an unnecessary and potentially problematic
generalization. Future work should analyze the relationship
between the uniqueness and ambiguity of the characteristics
of the identifier, the size of the identifier space, and – on
a practical level – whether security experts independently
create matching identifiers for the same vulnerability. Further
work should focus on the possibility, the role and the security
requirements of a trusted third party like the UN to calculate
stockpile intersections, to circumvent the current necessity
of cooperation between potentially opposing state actors. In
addition, it would be interesting to implement EXTRUST as
an actual measure between state parties to monitor its real
world usage, its perception of the systems security and
usability by the participating states as well its impact on their
vulnerability disclosure considerations.

Due to the high political relevance of our proposal, we hope
that this approach can be an inspiration to computer science
and engineering to reflect on the ethical responsibility for the
domain of cyberspace and its peaceful development and that
future interdisciplinary work in this area will bring together
researchers from privacy, IT security, and peace and conflict
research.

ACKNOWLEDGEMENTS

This research work has been funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
– SFB 1119 (CROSSING) – 236615297. It was co-funded by
GRK 2050 Privacy & Trust/251805230, the German Federal

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

12

Ministry of Education and Research and the Hessian Ministry
of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Applied
Cybersecurity ATHENE, as well as the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No. 850990
PSOTI).

REFERENCES

[1] C. Reuter, Information Technology for Peace and Security - IT-
Applications and Infrastructures in Conflicts, Crises, War, and Peace.
Wiesbaden, Germany: Springer Vieweg, 2019. [Online]. Available:
https://www.springer.com/de/book/9783658256517

[2] K. Giles and K. Hartmann, ““silent battle” goes loud: Entering a new
era of state-avowed cyber conflict,” in 11th International Conference
on Cyber Conflict (CyCon). IEEE, 2019, pp. 1–13.

[3] J. A. Lewis and G. Neuneck, The cyber index: international security
trends and realities. UNIDIR, 2013.

[4] R. Koch and M. Golling, “Silent Battles: Towards Unmasking Hidden
Cyber Attack,” in 11th International Conference on Cyber Conflict,
2019, pp. 1–20.

[5] R. Buchan, Cyber Espionage and International Law. Hart Publishing,
2018. [Online]. Available: https://www.bloomsburyprofessional.com/
uk/cyber-espionage-and-international-law-9781782257363/

[6] I. Georgieva, “The unexpected norm-setters : Intelligence agencies
in cyberspace,” Contemporary Security Policy, vol. 0, no. 0, pp.
1–22, 2019. [Online]. Available: https://doi.org/10.1080/13523260.
2019.1677389

[7] N. Dhir, H. Hoeltgebaum, N. Adams, M. Briers, A. Burke, and P. Jones,
“Prospective artificial intelligence approaches for active cyber defence,”
2021.

[8] T. Reinhold and C. Reuter, Cyber Weapons and Artificial Intelligence:
Impact, Influence and the Challenges for Arms Control. Springer
International Publishing, 2022, pp. 145–158. [Online]. Available:
https://doi.org/10.1007/978-3-031-11043-6 11

[9] R. L. Russell, L. Kim, L. H. Hamilton, T. Lazovich, J. A. Harer,
O. Ozdemir, P. M. Ellingwood, and M. W. McConley, “Automated
vulnerability detection in source code using deep representation
learning,” 2018. [Online]. Available: https://arxiv.org/abs/1807.04320

[10] A. Amarasinghe, W. Wijesinghe, D. Nirmana, A. Jayakody, and
A. Priyankara, “Ai based cyber threats and vulnerability detection,
prevention and prediction system,” in 2019 International Conference
on Advancements in Computing (ICAC), 2019, pp. 363–368.

[11] L. Ablon and A. Bogart, Zero days, thousands of nights: The life and
times of zero-day vulnerabilities and their exploits. Rand Corporation,
2017.

[12] J. Rovner, “The Intelligence Contest in Cyberspace,” 2020.
[Online]. Available: https://www.lawfareblog.com/intelligence-contest-
cyberspace

[13] NATO CCDCOE, “Recent Cyber Events and Possible Implications
for Armed Forces,” NATO Cooperative Cyber Defence Centre of
Excellence, Tech. Rep., 2020.

[14] M. Schulze and T. Reinhold, “Wannacry About the Tragedy of the
Commons? Game-Theory and the Failure of Global Vulnerability
Disclosure,” in European Conference on Cyber Warfare and Security
(ECCWS’18). Academic Conferences Ltd, 2018, pp. 454–463.

[15] C. Cimpanu, “Kaspersky identifies mysterious APT mentioned in
2017 Shadow Brokers leak,” https://www.zdnet.com/article/kaspersky-
identifies-mysterious-apt-mentioned-in-2017-shadow-brokers-leak/,
2019, [Last retrieved 30-Aug-2020].

[16] R. Milch, I. Pernice, S. Romanosky, K. Lewinski, S. Shackelford,
P. Rosenzweig, T. Christakis, P. Swire, J. Healey, S. Herpig, J. Pohle,
S. Zatko, and E. Wenger, “Building common approaches for cyberse-
curity and privacy in a globalized world,” SSRN Electronic Journal, 01
2019.

[17] M. Schulze, “Quo Vadis Cyber Arms Control? – A Sketch of an
International Vulnerability Equities Process and a 0-Day Emissions
Trading Regime,” in Science Peace Security ‘19: Proceedings of the In-
terdisciplinary Conference on Technical Peace and Security Research.
TU Darmstadt, 2019, pp. 24–40.

[18] R. J. Harknett and M. Smeets, “Cyber campaigns and strategic
outcomes,” Journal of Strategic Studies, vol. 45, no. 4, pp. 534–
567, 2020. [Online]. Available: https://doi.org/10.1080/01402390.2020.
1732354

[19] T. Reinhold and C. Reuter, “Arms Control and its Applicability
to Cyberspace,” in Information Technology for Peace and Security.
Springer, 2019, pp. 207–231.

[20] UN-GGE, “Report of the Group of Governmental Experts on Devel-
opments in the Field of Information and Telecommunications in the
Context of International Security,” https://digitallibrary.un.org/record/
799853, 2015, [Last retrieved 30-Aug-2020].

[21] OSCE, “OSCE Confidence-Building Measures to reduce the risks of
conflict stemming from the use of Information and Communication
Technologies,” https://www.osce.org/pc/227281, 2016, [Last retrieved
30-Aug-20209].

[22] C. Sauerwein, C. Sillaber, A. Mussmann, and R. Breu, “Threat intelli-
gence sharing platforms: An exploratory study of software vendors and
research perspectives,” in Proceedings der 13. Internationalen Tagung
Wirtschaftsinformatik (WI 2017). WI, 2017, pp. 837–851.

[23] P. Kuehn, T. Riebe, L. Apelt, M. Jansen, and C. Reuter, “Sharing of
cyber threat intelligence between states,” Sicherheit & Frieden, vol. 38,
no. 1, pp. 22–28, 7 2020.

[24] T. Reinhold and C. Reuter, “From Cyber War to Cyber Peace,” in
Information Technology for Peace and Security. Springer, 2019, pp.
139–164.

[25] F. Cohen, “Computer viruses: theory and experiments,” Computers &
Security (C&S’87), vol. 6, no. 1, pp. 22–35, 1987.

[26] D. Kirat and G. Vigna, “Malgene: Automatic extraction of malware
analysis evasion signature,” in Computer and Communications Security
(CCS’15). ACM, 2015, pp. 769–780.

[27] R. Petrik, B. Arik, and J. M. Smith, “Towards architecture and os-
independent malware detection via memory forensics,” in Computer
and Communications Security (CCS’18). ACM, 2018, pp. 2267–2269.

[28] P. Kuehn, D. N. Relke, and C. Reuter, “Common Vulnerability Scoring
System Prediction Based on Open Source Intelligence Information
Sources,” Computers & Security, 2023.

[29] Mitre, “Common vulnerabilities and exposures,” https://cve.mitre.org/,
2005, [Last retrieved 30-Aug-2020].

[30] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang, “Towards
the detection of inconsistencies in public security vulnerability reports,”
in USENIX Security’19. USENIX, 2019, pp. 869–885.

[31] F. Sadique, S. Cheung, I. Vakilinia, S. Badsha, and S. Sengupta,
“Automated structured threat information expression (stix) document
generation with privacy preservation,” in Ubiquitous Computing, Elec-
tronics & Mobile Communication Conference (UEMCON’18). IEEE,
2018, pp. 847–853.

[32] VERIS, “Vocabulary for Event Recording and Incident Sharing Frame-
work,” http://veriscommunity.net/, 2019, [Last retrieved 30-Aug-2020].

[33] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “CWE,”
Mitre, Tech. Rep., 2011.

[34] A. One, “Smashing the stack for fun and profit,” Phrack magazine,
vol. 7, no. 49, pp. 14–16, 1996.

[35] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and
B. Liang, “SemFuzz: Semantics-based Automatic Generation of
Proof-of-Concept Exploits,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. New York, NY, USA: Association for Computing
Machinery, Oct. 2017, pp. 2139–2154. [Online]. Available: https:
//doi.org/10.1145/3133956.3134085

[36] N. Carlini and D. Wagner, “{ROP} is Still Dangerous: Breaking Mod-
ern Defenses,” in 23rd USENIX Security Symposium (USENIX Security
14), 2014, pp. 385–399. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/carlini

[37] H. Shacham, “The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86),” in Proceedings
of the 14th ACM conference on Computer and communications
security, ser. CCS ’07. New York, NY, USA: Association for
Computing Machinery, Oct. 2007, pp. 552–561. [Online]. Available:
https://doi.org/10.1145/1315245.1315313

[38] M. Zhao, J. Grossklags, and K. Chen, “An exploratory study of white
hat behaviors in a web vulnerability disclosure program,” in Security
Information Workers (SIW’14). ACM, 2014, pp. 51–58.

[39] N. Perlroth, “HackerOne Connects Hackers with Companies,
and Hopes for a Win-Win,” https://www.nytimes.com/2015/06/08/
technology/hackerone-connects-hackers-with-companies-and-hopes-
for-a-win-win.html, 2015, [Last retrieved 30-Aug-2020].

[40] Mozilla, “Security Bug Bounty Program,” https://www.mozilla.org/en-
US/security/bug-bounty/, 2017, [Last retrieved 30-Aug-2020].

[41] Facebook, “Facebook White-Hat,” https://www.facebook.com/
whitehat/, 2018, [Last retrieved 30-Aug-2020].

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

https://www.springer.com/de/book/9783658256517
https://www.bloomsburyprofessional.com/uk/cyber-espionage-and-international-law-9781782257363/
https://www.bloomsburyprofessional.com/uk/cyber-espionage-and-international-law-9781782257363/
https://doi.org/10.1080/13523260.2019.1677389
https://doi.org/10.1080/13523260.2019.1677389
https://doi.org/10.1007/978-3-031-11043-6_11
https://arxiv.org/abs/1807.04320
https://www.lawfareblog.com/intelligence-contest-cyberspace
https://www.lawfareblog.com/intelligence-contest-cyberspace
https://doi.org/10.1080/01402390.2020.1732354
https://doi.org/10.1080/01402390.2020.1732354
https://digitallibrary.un.org/record/799853
https://digitallibrary.un.org/record/799853
https://www.osce.org/pc/227281
https://cve.mitre.org/
http://veriscommunity.net/
https://doi.org/10.1145/3133956.3134085
https://doi.org/10.1145/3133956.3134085
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://doi.org/10.1145/1315245.1315313
https://www.nytimes.com/2015/06/08/technology/hackerone-connects-hackers-with-companies-and-hopes-for-a-win-win.html
https://www.nytimes.com/2015/06/08/technology/hackerone-connects-hackers-with-companies-and-hopes-for-a-win-win.html
https://www.nytimes.com/2015/06/08/technology/hackerone-connects-hackers-with-companies-and-hopes-for-a-win-win.html
https://www.mozilla.org/en-US/security/bug-bounty/
https://www.mozilla.org/en-US/security/bug-bounty/
https://www.facebook.com/whitehat/
https://www.facebook.com/whitehat/

13

[42] S. Zimmerman, “Microsoft Announces Windows Bug Bounty Pro-
gram and Extension of Hyper-V Bounty Program,” https://www.xda-
developers.com/microsoft-windows-bug-bounty/, 2017, [Last retrieved
30-Aug-2020].

[43] C. Evans, “Announcing Project Zero,” https://googleprojectzero.
blogspot.com/2014/07/announcing-project-zero.html, 2014, [Last re-
trieved 30-Aug-2020].

[44] A. C. Yao, “How to generate and exchange secrets (extended abstract),”
in Symposium on Foundations of Computer Science (FOCS’86). IEEE,
1986, pp. 162–167.

[45] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or A completeness theorem for protocols with honest majority,”
in Symposium on Theory of Computing (STOC’87). ACM, 1987, pp.
218–229.

[46] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols (extended abstract),” in Symposium on Theory of Computing
(STOC’90). ACM, 1990, pp. 503–513.

[47] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft, “Secure multiparty computation goes live,”
in Financial Cryptogrphy (FC’09). Springer, 2009, pp. 325–343.

[48] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set inter-
section based on OT extension,” ACM Transactions on Privacy and
Security (TOPS), vol. 21, no. 2, pp. 1–35, 2018.

[49] A. Mirhoseini, A. R. Sadeghi, and F. Koushanfar, “CryptoML: Secure
outsourcing of big data machine learning applications,” in International
Symposium on Hardware Oriented Security and Trust (HOST’16).
IEEE, 2016, pp. 149–154.

[50] S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-party
computation,” https://eprint.iacr.org/2011/272, 2011, [Last retrieved 30-
Aug-2020].

[51] Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas, “Private set
intersection for unequal set sizes with mobile applications,” in Privacy
Enhancing Technologies Symposium (PoPETs’17). De Gruyter, 2017,
pp. 177–197.

[52] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “PSI from PaXoS:
Fast, malicious private set intersection,” in Theory and Applications
of Cryptographic Techniques (EUROCRYPT’20), A. Canteaut and
Y. Ishai, Eds. Springer, 2020, pp. 739–767.

[53] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu,
“Practical multi-party private set intersection from symmetric-key tech-
niques,” in Computer and Communications Security CCS’19. ACM,
2017, pp. 1257–1272.

[54] R. Inbar, E. Omri, and B. Pinkas, “Efficient scalable multiparty private
set-intersection via garbled bloom filters,” in Security and Cryptogra-
phy for Networks (SCN’18), 2018.

[55] C. Hazay and M. Venkitasubramaniam, “Scalable multi-party private
set-intersection,” in Public Key Cryptogrphy (PKC’17). Springer,
2017, pp. 175–203.

[56] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in Symposium on Network and
Distributed System Security (NDSS’12). The Internet Society, 2012.

[57] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for cpu based attestation and sealing,” in Hardware and Architectural
Support for Security and Privacy (HASP’13). Citeseer, 2013.

[58] P. Koeberl, V. Phegade, A. Rajan, T. Schneider, S. Schulz, and
M. Zhdanova, “Time to rethink: Trust brokerage using trusted exe-
cution environments,” in Trust and Trustworthy Computing TRUST’15.
Springer, 2015, pp. 181–190.

[59] D. Gupta, B. Mood, J. Feigenbaum, K. R. B. Butler, and P. Traynor,
“Using intel software guard extensions for efficient two-party secure
function evaluation,” in Financial Cryptography (FC’16). Springer,
2016, pp. 302–318.

[60] K. A. Küçük, A. Paverd, A. C. Martin, N. Asokan, A. Simpson, and
R. Ankele, “Exploring the use of intel SGX for secure many-party
applications,” in Proceedings of the 1st Workshop on System Software
for Trusted Execution (SysTEX’16). ACM, 2016, pp. 5:1–5:6.

[61] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A. Sadeghi, G. Scerri,
and B. Warinschi, “Secure multiparty computation from SGX,” in
Financial Cryptography (FC’17). Springer, 2017, pp. 477–497.

[62] S. Felsen, Á. Kiss, T. Schneider, and C. Weinert, “Secure and private
function evaluation with intel SGX,” in Cloud Computing Security
Workshop (CCSW’19). ACM, 2019, pp. 165–181.

[63] J. Goldblat, Arms Control: The New Guide to Negotiations and
Agreements, 2nd ed. SAGE, 2002.

[64] T. Reinhold and C. Reuter, “Verification in Cyberspace,” in Information
Technology for Peace and Security. Wiesbaden, Germany: Springer
Fachmedien, 2019.

[65] B. Zangl and M. Zürn, “Theorien des rationalen handelns in den inter-
nationalen beziehungen,” in Rational Choice in der Politikwissenschaft:
Grundlagen und Anwendungen. VS Verlag für Sozialwissenschaften,
1994, pp. 81–111.

[66] A. I. Kraus, O. Frazer, L. Kirchhoff, T. Kyselova, S. J. A. Mason,
and J. Palmiano Federer, “Dilemmas and trade-offs in peacemaking: A
framework for navigating difficult decisions,” Politics and Governance,
vol. 7, no. 4, pp. 331 – 342, 2019.

[67] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction
to secure multi-party computation,” Found. Trends Priv. Secur., vol. 2,
no. 2-3, pp. 70–246, 2018.

[68] P. Kuehn, M. Bayer, M. Wendelborn, and C. Reuter, “OVANA: An
approach to analyze and improve the information quality of vulnera-
bility databases,” in Proceedings of the 16th International Conference
on Availability, Reliability and Security. ACM, 2021, p. 11.

[69] Mitre, “CWE - Research Concept,” https://cwe.mitre.org/data/
definitions/1000.html, 2019, [Last retrieved 30-Aug-2020].

[70] B. A. Cheikes, K. A. Kent, and D. Waltermire, Common platform
enumeration: Naming specification version 2.3. US Department of
Commerce, National Institute of Standards and Technology, 2011.

[71] S. S. Gupta, Blockchain. John Wiley & Sons, Inc, 2017.
[72] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain

challenges and opportunities: A survey,” International Journal of Web
and Grid Services (IJWGS’18), vol. 14, no. 4, pp. 352–375, 2018.

[73] J. Katz and Y. Lindell, Introduction to modern cryptography. Chapman
and Hall/CRC, 2014.

[74] A. Davies, “Private Blockchain: 2019 Implementation Guide -
DevTeam.Space,” https://www.devteam.space/blog/private-blockchain-
implementation-guide, 2018, [Last retrieved 30-Aug-2020].

[75] D. Voell, F. L.-N. Gaski, R. Jagadeesan, R. Khasanshyn, H. Mont-
gomery, S. Teis, T. Blummer, M. K. Katipalli, and M. Bowman, “Hy-
perledger whitepaper,” https://blockchainlab.com/pdf/Hyperledger%
20Whitepaper.pdf, 2016, [Last retrieved 30-Aug-2020].

[76] Hyperledger, “Hyperledger Composer Overview,” https:
//www.hyperledger.org/wp-content/uploads/2017/05/Hyperledger-
Composer-Overview.pdf, 2017, [Last retrieved 30-Aug-2020].

[77] OpenSSL, “openssl-dgst, dgst - perform digest operations,” https:
//www.openssl.org/docs/man1.1.1/man1/openssl-dgst.html, 2020, [Last
retrieved 30-Aug-2020].

[78] NIST, “Nist policy on hash functions,” https://csrc.nist.gov/projects/
hash-functions/nist-policy-on-hash-functions, 2015, [Last retrieved 30-
Aug-2020].

[79] S. Nadeem, “If we lived in a bitcoin future , how big would the
blockchain have to be?” https://link.medium.com/5pi6wxXqN2, 2019,
[Last retrieved 30-Aug-2020].

[80] U. W. Chohan, “The Limits to Blockchain? Scaling vs. Decentraliza-
tion,” SSRN Electronic Journal, 2019.

[81] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer,
“On scaling decentralized blockchains,” in Financial Cryptography
(FC’16). Springer, 2016, pp. 106–125.

[82] L. Demir, A. Kumar, M. Cunche, and C. Lauradoux, “The pitfalls
of hashing for privacy,” IEEE Communications Surveys & Tutorials
(CST’18), vol. 20, no. 1, pp. 551–565, 2018.

[83] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert,
“Mobile private contact discovery at scale,” in USENIX Security’19.
USENIX, 2019, pp. 1447–1464.

[84] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: new generation
of memory-hard functions for password hashing and other applica-
tions,” in European Symposium on Security and Privacy (EuroS&P).
IEEE, 2016, pp. 292–302.

[85] C. Ye, G. Li, H. Cai, Y. Gu, and A. Fukuda, “Analysis of Security in
Blockchain: Case Study in 51%-Attack Detecting,” in 5th International
Conference on Dependable Systems and Their Applications (DSA),
2018, pp. 15–24.

[86] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I.
Pagter, N. P. Smart, and R. N. Wright, “From keys to databases - real-
world applications of secure multi-party computation,” The Computer
Journal, vol. 61, no. 12, pp. 1749–1771, 2018.

[87] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction
to secure multi-party computation,” Foundations and Trends in Privacy
and Security, vol. 2, no. 2-3, pp. 70–246, 2018.

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

https://www.xda-developers.com/microsoft-windows-bug-bounty/
https://www.xda-developers.com/microsoft-windows-bug-bounty/
https://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html
https://googleprojectzero.blogspot.com/2014/07/announcing-project-zero.html
https://eprint.iacr.org/2011/272
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1000.html
https://www.devteam.space/blog/private-blockchain-implementation-guide
https://www.devteam.space/blog/private-blockchain-implementation-guide
https://blockchainlab.com/pdf/Hyperledger%20Whitepaper.pdf
https://blockchainlab.com/pdf/Hyperledger%20Whitepaper.pdf
https://www.hyperledger.org/wp-content/uploads/2017/05/Hyperledger-Composer-Overview.pdf
https://www.hyperledger.org/wp-content/uploads/2017/05/Hyperledger-Composer-Overview.pdf
https://www.hyperledger.org/wp-content/uploads/2017/05/Hyperledger-Composer-Overview.pdf
https://www.openssl.org/docs/man1.1.1/man1/openssl-dgst.html
https://www.openssl.org/docs/man1.1.1/man1/openssl-dgst.html
https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions
https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions
https://link.medium.com/5pi6wxXqN2

14

[88] L. Braun, D. Demmler, T. Schneider, and O. Tkachenko, “MOTION
- a framework for mixed-protocol multi-party computation,” ACM
Transactions on Privacy and Security (TOPS), vol. 2, no. 2-3, 2021,
to appear.

[89] I. Damgård and C. Orlandi, “Multiparty computation for dishonest
majority: From passive to active security at low cost,” in Cryptology
Conference (CRYPTO’10). Springer, 2010, pp. 558–576.

[90] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-
homomorphic encryption and multiparty computation,” in Theory
and Applications of Cryptographic Techniques (EUROCRYPT’11).
Springer, 2011, pp. 169–188.

[91] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A
new approach to practical active-secure two-party computation,” in
Cryptology Conference (CRYPTO’12). Springer, 2012, pp. 681–700.

[92] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in Cryptology
Conference (CRYPTO’12). Springer, 2012, pp. 643–662.

[93] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure MPC for dishonest majority - or: Breaking
the SPDZ limits,” in European Symposium on Research in Computer
Security (ESORICS’13). Springer, 2013, pp. 1–18.

[94] Y. Lindell, N. P. Smart, and E. Soria-Vazquez, “More efficient constant-
round multi-party computation from BMR and SHE,” in Theory of
Cryptography (TCC’16) (B1). Springer, 2016, pp. 554–581.

[95] M. Keller, “MP-SPDZ,” https://github.com/data61/MP-SPDZ, 2016,
[Last retrieved 30-Aug-2020].

[96] A. Aly, M. Keller, D. Rotaru, P. Scholl, N. P. Smart, and T. Wood,
“SCALE-MAMBA,” https://homes.esat.kuleuven.be/%7Ensmart/
SCALE/, 2018, [Last retrieved 30-Aug-2020].

[97] R. Rachuri and A. Suresh, “Trident: Efficient 4PC framework for
privacy preserving machine learning,” in Symposium on Network and
Distributed System Security (NDSS’20). The Internet Society, 2020.

[98] A. Patra and A. Suresh, “BLAZE: blazing fast privacy-preserving
machine learning,” in Symposium on Network and Distributed System
Security (NDSS’20). The Internet Society, 2020.

[99] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA:
high throughput 3pc over rings with application to secure prediction,”
in Proceedings of the 2019 ACM SIGSAC Conference on Cloud
Computing Security Workshop (CCSW’19). ACM, 2019, pp. 81–92.

[100] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework
for fast privacy-preserving computations,” in European Symposium on
Research in Computer Security (ESORICS’08). Springer, 2008, pp.
192–206.

[101] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework
for machine learning,” in Computer and Communications Security
(CCS’18). ACM, 2018, pp. 35–52.

[102] D. Demmler, T. Schneider, and M. Zohner, “ABY - A framework for
efficient mixed-protocol secure two-party computation,” in Symposium
on Network and Distributed System Security (NDSS’15). The Internet
Society, 2015.

[103] Bosch, “Carbyne Stack: Cloud Native Secure Multiparty Computation,”
https://carbynestack.io, 2021, [Last retrieved 28-Oct-2022].

[104] M. Keller, E. Orsini, and P. Scholl, “MASCOT: faster malicious
arithmetic secure computation with oblivious transfer,” in Computer
and Communications Security (CCS’16). ACM, 2016, pp. 830–842.

[105] G. Maslov and R. Ustinov, “IAEA Verification Activities: A Tool of
Building Trust or Building Up Pressure?” in Russia in Global Affairs,
2020, [Last retrieved 30-Aug-2020].

[106] ZERODIUM, “Zerodium - the leading exploit acquisition platform for
premium zero-days and advanced cybersecurity capabilities.” https://
www.zerodium.com/, 2019, [Last retrieved 30-Aug-2020].

ANNEX

The Annex is made available in a separate electronic file
that will be an addendum to the main article.

This article has been accepted for publication in IEEE Transactions on Technology and Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TTS.2023.3280356

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULB Darmstadt. Downloaded on June 02,2023 at 14:40:29 UTC from IEEE Xplore. Restrictions apply.

https://github.com/data61/MP-SPDZ
https://homes.esat.kuleuven.be/%7Ensmart/SCALE/
https://homes.esat.kuleuven.be/%7Ensmart/SCALE/
https://carbynestack.io
https://www.zerodium.com/
https://www.zerodium.com/

	Introduction
	Related Work
	Vulnerability Terminology and Malware Identification Methods
	Vulnerability Mitigation & External Depletion Measures
	Cryptographic Protocols
	Multi-Party Computation (MPC)
	Private Set Intersection (PSI)
	Trusted Execution Environment (TEE)

	Research Gap

	Requirements Analysis
	Conceptual Requirements
	Adversary Model
	Technical and Security Requirements

	Identifier of Vulnerabilities
	Machine-Readable Vulnerability Identifier
	Analysis

	ExTRUST using Blockchain
	System Architecture and Procedure
	Implementation
	Discussion of BC-based ExTRUST

	ExTRUST using Multi-Party Computation
	System Architecture
	Complexity and optimization of the Boolean circuit
	Using Private Set Intersection to calculate collisions
	Instantiation

	Feasibility of MPC-based ExTRUST implementation
	Evaluation of the scalability of MPC-based ExTRUST

	Discussion
	Conceptual Requirements
	Security Requirements
	Further Application Scenarios

	Conclusion and Future Work
	References

